Increased expression of Nox1 in neointimal smooth muscle cells promotes activation of matrix metalloproteinase-9.
نویسندگان
چکیده
OBJECTIVE Vascular injury causes neointimal hypertrophy, which is characterized by redox-mediated matrix degradation and smooth muscle cell (SMC) migration and proliferation. We hypothesized that, as compared to the adjacent medial SMCs, neointimal SMCs produce increased superoxide via NADPH oxidase, which induces redox-sensitive intracellular signaling to activate matrix metalloproteinase-9 (MMP-9). METHODS AND RESULTS Two weeks after balloon injury, rat aorta developed a prominent neointima, containing increased expression of NADPH oxidase and reactive oxygen species (ROS) as compared to the medial layer. Next, SMCs were isolated from either the neointima or the media and studied in culture. Neointimal-derived SMCs exhibited increased Nox1 expression and ROS levels as compared to medial SMCs. Neointimal SMCs had higher cell growth rates than medial SMCs. ROS-dependent ERK1/2 phosphorylation was greater in neointimal SMCs. MMP-9 activity, as detected by gel zymography, was greater in neointimal SMCs under resting and stimulated conditions and was prevented by expression of an antisense to Nox1 or treatment with an ERK1/2 inhibitor. CONCLUSIONS Following vascular injury, the increased expression of Nox1 in SMCs within the neointima initiates redox-dependent phosphorylation of ERK1/2 and subsequent MMP-9 activation.
منابع مشابه
Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration.
AIMS In atherosclerosis and restenosis, vascular smooth muscle cells (SMCs) migrate into the subendothelial space and proliferate, contributing to neointimal formation. The goal of this study was to define the signalling pathway by which Nox1 NAPDH oxidase mediates SMC migration. METHODS AND RESULTS SMCs were cultured from thoracic aorta from Nox1(-/y) (Nox1 knockout, KO) and wild-type (WT) m...
متن کاملThe Effect of Adiponectin on Matrix Metalloproteinase-9 (MMP-9) in Vascular Smooth Muscle Cells
Background & Aims: Atherosclerosis is a major cause of morbidity and mortality. Adiponectin reducesthe risk of heart disease, and matrix metalloproteinase-9 (MMP-9) is involved in the formation and development of atherosclerotic plaque. The aim of this study was the investigation of the effect of adiponectin on MMP-9 gene expression. It seems this hormone can reduce the risk of atherosclerosis ...
متن کاملA critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation.
OBJECTIVE We have shown that the chloride-proton antiporter chloride channel-3 (ClC-3) is required for endosome-dependent signaling by the Nox1 NADPH oxidase in SMCs. In this study, we tested the hypothesis that ClC-3 is necessary for proliferation of smooth muscle cells (SMCs) and contributes to neointimal hyperplasia following vascular injury. METHODS AND RESULTS Studies were performed in S...
متن کاملVanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia
The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARγ) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including ...
متن کاملMechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation.
OBJECTIVE Vascular NADPH oxidases (Noxes) have been implicated in cardiovascular diseases; however, the importance of individual Nox homologues remains unclear. Here, the role of the vascular smooth muscle cell (VSMC) Nox1 in neointima formation was studied using genetically modified animal models. METHODS AND RESULTS Wire injury-induced neointima formation in the femoral artery, along with p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vascular research
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2012